699 research outputs found

    Revitalization Approaches to Maximize Heritage Urban DNA Characteristics in Declined Cities: Foah City as a Case Study

    Get PDF
    Revitalization is an important process in action area planning, especially in the heritage sites located within urban area contexts. Varied techniques and tools of revitalization are applied at various spatial levels, some are suitable for the urban scope, and others suit the architectural building scope. Urban DNA is a term used academically to reflect social, economic, and urban characteristics but has a different interpretation that depends on the spatial scale and context. In action areas, urban DNA refers to the essential visual, social, economic, and physical characteristics that preserve the vital structure of an urban area. Heritage areas are vital in a city structure, in the journey of maximizing the urban DNA chrematistics of heritage sites, sometimes the urban DNA is lost in the process. This paper identifies and encapsulates the importance of Urban DNA in heritage site considerations in the revitalization process within heritage urban context to maximize the socio-economic and visual impacts, especially in declined cities such as Foah City the case study in the Nile Delta region in Egypt. The results pinpoint the most effective urban DNA structure for the declined Foah Heritage Center, despite the city's importance as a ranked third of heritage cities in the country

    A proposed optimized equivalent circuit and performance analysis of dielectric barrier discharge ozone generator

    Get PDF
    Traditionally, low-frequency power supplies are used in dielectric barrier discharge (DBD) ozone generators. These generators require a very high output voltage. This may limit ozone production due to limitations imposed by the dielectric strength of the insulating material. Low-frequency generators also present low efficiency, large volumes, and difficulty in controlling ozone production. On the other hand, the advantages of high frequency DBD ozone generators are the increased power density applied to the chamber electrodes, and the voltage applied to the ozone chamber decreases, allowing for higher ozone production efficiency. From this point of view, in order to enhance and control the DBD ozone generator operating at high frequency, it is necessary to determine all parameter values and optimize the equivalent model for this type of generator. This work presents and proposes the practical methodologies used to extract all parameters of the high voltage high frequency (HVHF) transformer which can be used in these systems. Resonant frequency control techniques are presented in this paper. Elimination of the stray capacitance effect will also be implemented in this paper

    Experimental Investigation of the Performance and Exhaust Emissions of a Spark-Ignition Engine Operating with Different Proportional Blends of Gasoline and Water Ammonia Solution

    Get PDF
    This paper aims to investigate the impact of water ammonia solution (WAS)-gasoline fuel (GF) blends on SI engine exhaust emission and engine performance characteristics and compare the obtained results with those using base gasoline. This investigation used a single-cylinder, four-stroke, air-cooled, and SI engine coupled with an AC generator to achieve this experimental work. Water ammonia solution fuel was blended with neat gasoline in volume rates of 5, 10,15,20, and 25%. The experimental investigation was conducted at an off-road engine under a constant engine speed of 3000 rpm and different load conditions. The results show that the use of ammonia solution as an addition to gasoline fuel increase the overall thermal efficiency, and G75Was25 blend obtained the maximum increase ratio of overall efficiency by 38.96% at maximum load condition in comparison to neat gasoline and reduce the specific fuel consumption compared with that of gasoline fuel. This alteration results in an elevation in CO, HC, and NOx emissions

    The effect of flow and mixture inhomogeneity on the dynamics of strained flames

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1999.Includes bibliographical references (leaves 76-80).by Youssef Mohamed Marzouk.S.M

    Vorticity structure and evolution in a transverse jet with new algorithms for scalable particle simulation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.Includes bibliographical references (p. 188-200).Transverse jets arise in many applications, including propulsion, effluent dispersion, oil field flows, V/STOL aerodynamics, and drug delivery. Furthermore, they exemplify flows dominated by coherent structures that cascade into smaller scales, a source of many current challenges in fluid dynamics. This study seeks a fundamental, mechanistic understanding of the relationship between the dispersion of jet fluid and the underlying vortical structures of the transverse jet-and of how to develop actuation that optimally manipulates their dynamics to affect mixing. We develop a massively parallel 3-D vortex simulation of a high-momentum transverse jet at large Reynolds number, featuring a discrete filament representation of the vorticity field with local mesh refinement to capture stretching and folding and hair-pin removal to regularize the formation of small scales. A novel formulation of the vorticity flux boundary conditions rigorously accounts for the interaction of channel vorticity with the jet boundary layer. This formulation yields analytical expressions for vortex lines in near field of the jet and suggests effective modes of unsteady actuation at the nozzle. The present computational approach requires hierarchical N-body methods for velocity evaluation at each timestep, as direct summation is prohibitively expensive. We introduce new clustering algorithms for parallel domain decomposition of N-body interactions and demonstrate the optimality of the resulting cluster geometries. We also develop compatible techniques for dynamic load balancing, including adaptive scaling of cluster metrics and adaptive redistribution of their centroids. These tools extend to parallel hierarchical simulation of N-body problems in gravitational astrophysics,(cont.) molecular dynamics, and other fields. Simulations reveal the mechanisms by which vortical structures evolve; previous computational and experimental investigations of these processes have been incomplete at best, limited to low Reynolds numbers, transient early-stage dynamics, or Eulerian diagnostics of essentially Lagrangian phenomena. Transformation of the cylindrical shear layer emanating from the nozzle, initially dominated by azimuthal vorticity, begins with axial elongation of its lee side to form sections of counter-rotating vorticity aligned with the jet trajectory. Periodic rollup of the shear layer accompanies this deformation, creating arcs carrying azimuthal vorticity of alternating signs, curved toward the windward side of the jet. Following the pronounced bending of the trajectory into the crossflow, we observe a catastrophic breakdown of these sparse periodic structures into a dense distribution of smaller scales, with an attendant complexity of tangled vortex filaments. Nonetheless, spatial filtering of this region reveals the persistence of counter-rotating streamwise vorticity. We further characterize the flow by calculating maximum direct Lyapunov exponents of particle trajectories, identifying repelling material surfaces that organize finite-time mixing.by Youssef Mohamed Marzouk.Ph.D

    Rise and Demise of the New Lakes of Sahara

    Get PDF
    Multispectral remote sensing data and digital elevation models were used to examine the spatial and temporal evolution of the New Lakes of Sahara in southern Egypt. These lakes appeared in September 1998, when water spilled northwestward toward the Tushka depression due to an unusual water rise in Lake Nasser induced by high precipitation in the Ethiopian Highlands. Five lakes were formed in local depressions underlain by an impermeable Paleocene shale and chalk formation. The lakes developed through three stages. (1) A rise stage occurred from September 1998 to August 2001; the area covered by the lakes reached ~1586 km2. In this stage the rate of water supply far exceeded the rate of water loss through evaporation. This stage was characterized by an early phase (August 1998-August 1999) when the area covered by the lakes increased by ~75 km2/month. This was followed by a late phase (August 1999-August 2001), in which area increase averaged ~28 km2/month. (2) A steady-state stage occurred from August 2001 to August 2003, during which the area covered by the lakes remained relatively unchanged and water lost through evaporation was continuously replaced by water supply from Lake Nasser. (3) A demise stage occurred from August 2003 to April 2007, during which water supply from Lake Nasser stopped completely and water was continuously evaporating. The area covered by the lakes decreased to ~800 km2 with an average loss of ~17 km2/month. If this trend continues, the New Lakes of Sahara will disappear completely by March 2011. The spatial distribution of the New Lakes of Sahara is strongly controlled by morphologically defined east-, north-, northeast-, and northwest-trending faults. The water recharge of the Nubian aquifer by the New Lakes of Sahara is insignificant; much of the lakes\u27 area is above an impermeable formation

    Coupling and nucleophilic reactions of a diazotized pyrazolopyridine derivative

    Get PDF
    948-95

    Calli Essential Oils Synergize with Lawsone against Multidrug Resistant Pathogens.

    Get PDF
    The fast development of multi-drug resistant (MDR) organisms increasingly threatens global health and well-being. Plant natural products have been known for centuries as alternative medicines that can possess pharmacological characteristics, including antimicrobial activities. The antimicrobial activities of essential oil (Calli oil) extracted from the Calligonum comosum plant by hydro-steam distillation was tested either alone or when combined with lawsone, a henna plant naphthoquinone, against MDR microbes. Lawsone showed significant antimicrobial activities against MDR pathogens in the range of 200-300 µg/mL. Furthermore, Calli oil showed significant antimicrobial activities against MDR bacteria in the range of 180-200 µg/mL, Candida at 220-240 µg/mL and spore-forming Rhizopus fungus at 250 µg/mL. Calli oil's inhibition effect on Rhizopus, the major cause of the lethal infection mucormycosis, stands for 72 h, followed by an extended irreversible white sporulation effect. The combination of Calli oil with lawsone enhanced the antimicrobial activities of each individual alone by at least three-fold, while incorporation of both natural products in a liposome reduced their toxicity by four- to eight-fold, while maintaining the augmented efficacy of the combination treatment. We map the antimicrobial activity of Calli oil to its major component, a benzaldehyde derivative. The findings from this study demonstrate that formulations containing essential oils have the potential in the future to overcome antimicrobial resistance

    Autonomic Dysfunction Predicts Early Cardiac Affection in Patients with Systemic Sclerosis

    Get PDF
    Objective: To detect the early preclinical alterations in cardiac autonomic control as well as altered cardiac function in systemic sclerosis (SSc) patients and their relevance to the clinical features of the disease using noninvasive methods. Methods: 30 SSc patients and 15 healthy controls matched for age and sex underwent clinical examination, serological analysis, and echocardiographic assessment including Doppler flow imaging to evaluate cardiac function, and 24-hour Holter monitoring analyzed for arrhythmia and heart rate variability (HRV) in the time and frequency domains. Results: The trans-mitral Doppler of early to atrial wave (E/A) ratio was reversed in five patients (16.6%) and the tricuspid E/A ratio was reversed in 10 patients (33.3%). Holter analysis for SSc patients revealed an increased prevalence of premature ventricular contractions (PVC) $ 10/h (P = 0.02), supra-ventricular tachycardias (SVTs) (P = 0.2), and total PVC count (P = 0.0000). Highly significant (P = 0.000) impairment in all HRV parameters was demonstrated in the SSc patients. Total skin thickness score (TSS), Raynaud’s phenomenon and anti-scleroderma 70 (anti-SCL70) showed significant positive correlations with all arrhythmia parameters, while showing a significant negative correlation with the impaired ventricular diastolic function and various HRV parameters. No correlation was found between arrhythmia and HRV parameters and disease duration, disease type, or presence of anti-centromere antibodies. Conclusion: Low heart rate variability, increased TSS and the presence of anti-SCL70 are correlated with preclinical cardiac involvement in SSc patients and may predict the likelihood of malignant arrhythmia and sudden cardiac death. Therefore, noninvasive HRV evaluation before clinical cardiac involvement in these patients might be beneficial when added to the clinical and laboratory assessments in detecting high-risk patients, and may allow for implementation of preventive measures and initiation of appropriate therapy early in the course of the disease
    • …
    corecore